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SUMMARY 

The theoretical models of chromatography, whether they assume or not 
quasi-equilibrium between the phases of the chromatographic system, lead to a set of 
partial differential equations that cannot be integrated but must be solved by 
numerical calculations. This procedure leads to computational errors. An analysis of 
the origin and importance of these errors is presented. A comparison is made between 
the errors introduced by different calculation procedures (mainly the characteristic 
and the Lax-Wendroff methods). The concentration dependence of the artificial 
diffusion introduced by the characteristic algorithm is discussed. 

INTRODUCTION 

Much attention has been given recently to the numerical solution of the set of 
mass balance equations of chromatography. Preparative chromatography has become 
a separation and purification method of considerable importance in the pharmaceuti- 
cal industries. The operation of preparative chromatographs must be carried out at 
high feed concentrations in order to achieve economical production. The prediction 
of the column performance and the optimization of the experimental conditions 
require a knowledge of the breakthrough curves for different injection conditions, 
corresponding to elution, frontal analysis or displacement, for samples of various 
composition. 

The only possibility for calculating these band profiles is by solving one of the 
relevant models of chromatography. The main feature of these models is the set of 
mass balance equations for the various compounds involved in the problem, the 
components of either the feed or the mobile phase. We can eliminate only the weakest 
solvent mass balance, by assuming that this solvent does not interact with the 
stationary phase, which sets a reference convention. The set of these mass balance 
equations must be completed by equations relating the concentrations of each 
component in the two phases of the chromatographic system at each time. 

In most instances, we can assume that we are near equilibrium, i.e., that the 
column efficiency is high, and we can replace the diffusive term of the mass balance 
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equations by a term that accounts for the rapid kinetics of radial mass transfer in 
modern columns’-3. In some rare instances, kinetic equations must be used’6. These 
equations relate the time differential of the concentration of each compound involved 
in the stationary phase to the concentration of this component in the stationary phase 
and to the concentrations of all the compounds involved in the mobile phase, in a given 
slice of column. The former models are called equilibrium or ideal models (if the 
column efficiency is infinite and equilibrium between both phases of the chromato- 
graphic system always takes place) or semi-ideal models (if equilibrium is not achieved 
but the deviation from equilibrium remains small, e.g., the column efficiency exceeds 
a few hundred theoretical plates). The latter models are called kinetic models. This 
paper is mainly concerned with semi-ideal models. 

The mass balance equation obtained for a pure compound is a partial differential 
equation that cannot be solved analytically and for which numerical solutions must be 
calculated. The numerical integration of a partial differential equation always 
introduces truncation errors because finite increments of the variable must be 
considered. As a huge number of loops must be circled during the integration, the 
errors made during the numerical calculation propagate and accumulate from one 
stage to the next. In some instances these errors have most undesirable consequences, 
as they lead to numerical instability of the solution, and must be avoided. In other 
instances they may be used to advantage. In this paper, we present an analysis of the 
nature and extent of these errors, with emphasis on those resulting from the 
characteristic and the Lax-Wendroff algorithms. 

In a previous paper’ we showed that, for a linear equilibrium isotherm between 
the two phases of a chromatographic system, the truncation error introduced by using 
the first-order characteristic type calculation scheme for the numerical integration of 
the partial differential equation has the same effect as a dispersion term on the band 
profile. If proper values are chosen for the space and time increments, this artificial 
dispersion term permits a successful account of the effect on the band profile of a finite 
column efftciency. With a non-linear isotherm, however, the artificial dispersion effect 
is different from that with a linear isotherm and the consequences are analyzed below. 

The investigation of the elution band profile of a pure compound is interesting as 
a necessary step in the study of the chromatographic separation of complex mixtures. 
In itself, however, it does not provide much useful information. As chromatography is 
a separation method, the elution of a binary mixture should be investigated. For the 
more practical and relevant discussion of the calculation of elution profiles of 
multicomponent samples, the use of the artificial dispersion introduced by the finite 
difference method and the characteristic algorithm is not suitable, in principle. In 
practice, it is acceptable only when the relative retention of the compounds considered 
is close to unity. The basic reason for the method being unsuitable is that the artificial 
dispersion it introduces depends on the slope of the isotherm. The simulation of the 
elution profiles of different compounds for which the column has the same efficiency 
requires different values of the space and time increments for the different compounds, 
a procedure which is’at best complicated and impractical. 

For this reason, considerable difficulties are encountered when trying to extend 
our previous results to the simulation of non-linear chromatography in the gradient 
elution mode. In this particular case, a numerical procedure that is easy to implement 
and is accurate would be very attractive for simulating the separation of multi- 
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component systems. A satisfactory approach is in the use of a higher order method, 
i.e., a method with which the truncation errors introduced by replacing the exact 
partial differential equation by an approximate difference algebraic equation are of 
second order with respect to the time and length increments. 

ERROR ANALYSIS IN THE CASE OF THE CHARACTERISTIC TYPE DIFFERENCE METHOD 

The ideal model of chromatography assumes constant equilibrium between the 
two phases and a column of infinite efficiency. Hence the diffusion term of the mass 
balance equation written for a pure compound in a slice of column is zero and the 
concentration in the stationary phase (C,) which appears in this mass balance is 
replaced by the value given by the equilibrium isotherm. The mathematical model of 
ideal chromatography for a pure compound is 

The isotherm is an equation [C, = q = fTC,)] which relates the concentrations at 
equilibrium in the mobile (C,) and the stationary phases. In eqn. 1, F is the phase ratio 
of the chromatographic column, u the cross-section average velocity of the mobile 
phase, t the time and z the abscissa along the column. 

The boundary and initial conditions for the integration in the case of 
a rectangular pulse injection, with a concentration CO and a time r, are 

C(z = 0, t) = co, O<t<z (2) 

and 

C(z = 0, t) = 0, t>z 

with 

C(z, t = 0) = 0 (3) 

Eqn. 1 is not the canonical form of this type of partial differential eqn. 2 (ref. 8). It is 
frequently encountered in aerodynamics and hydraulics, where it is discussed by 
mechanical engineers in the form 

(4) 

where 

SE’ 
24 

(5) 
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and 

H=C+Fq (6) 

In the general case, there is no analytical solution known for eqn. 1. When solutions are 
needed, they must be calculated. 

The principle of the calculation of numerical solutions of eqn. 1 is to replace the 
continuous (z, t) plane by a grid and to calculate the numerical values of the 
concentration C of the compound studied in the mobile phase at each point (n.~) of this 
grid. The space and time increments of the grid are h and r, respectively. The injection 
profile is discretized. Then, for each time t = jr, the concentration at each point in the 
column, z = nh, 0 < n < L/h, is calculated from the similar profile, C(Q), obtained 
at the previous instant, t = 0’ - 1)~ and from the initial and boundary conditions. The 
set of values of the concentration for z = L (L = length of the column) for each time 
frame constitutes the elution chromatogram. In this paper, we discuss two numerical 
schemes for the numerical calculation of profiles which are solutions of eqn. 1. The first 
type has been used for writing the computer program we have developed and used for 
the calculation of the elution band profiles of pure compounds3s7’*, binary mixtures9 
or system peaks” and of the profiles of displacement bands”. 

First difference type 
In the calculation procedure described above, eqn. 1 is replaced by the following 

algebraic equation, which is its finite difference equivalent: 

q+l - q 
h 

+;.q-q-1 +p.+97-l =-J 

t.4 T z 
(7) 

U 

Eqns. 1 and 7 would be entirely equivalent only if the increments, h and r, could be 
made zero, which, in turn, would require an infinite computation time, not a realistic 
proposition. As the increments must be finite, a numerical error results from the 
replacement of eqn. 1 by eqn. 7. During the calculation process, these errors propagate 
and build up. If the values of the space and time increments are not properly chosen, 
divergence and oscillations may occur and the numerical solution does not bear any 
resemblance to the exact solution of the partial differential equation studied. The 
stability condition for this method, in the ideal approximation, is 

h 
-<I 
u,r 

(8) 

where uz is given by eqn. 16b (see below) 2*7. This condition is called the Courant 
condition of the problem and z&h is its Courant number. It has been demonstrated 
that, when h and r satisfy it, the numerical solution obtained converges towards the 
exact solution of the partial differential equation with decreasing increment values2. 

In order to calculate the error made by replacing eqn. 1 by eqn. ‘7 in the 
calculation of the elution band profile, we may replace the different concentration 
terms by their three-term expansion: 
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q+l 2z (9) 

and 

q-1 (10) 

We shall assume here that the equilibrium isotherm is given by the classical Langmuir 
equation, although most of the conclusions are valid with other equilibrium equations. 
With a Langmuir isotherm we have 

where G and b are constants. Therefore, 

The three difference terms in eqn. 7 become 

F. d -d-1 = FG(Cj - q-1) 

T (1 + b+,)(l + bq’)r 

(11) 

(13) 

(14) 

which is equivalent to 

z a2c n -i-u 2 at2 i 
(15’4 

Combining eqn. 7 with eqns. 9-15 gives 

(l...$~+..$= xl +I+)$-$($) (16) 

From eqn. 1 we can derive a relationship giving the velocity, a,. associated with 
a concentration*: 

ac $ at=--"2 aZ (174 
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(17b) 

From eqns. 17a and 17b we 

a2c a ac 
s=-& -&I& = ( > (18) 

Substituting eqn. 18 into eqn. 16 permits the determination of the error made in the 
calculation of the profile when using eqn. 7. We have 

where a is the Courant number [u,r/h = ur/(l + &)h], which we have taken as equal 
to 2, by selecting properly the time increment, r, as a function of the space 
increment3.‘*‘. The choice of a Courant number of 2 ensures numerical stability of the 
calculated solution (eqn. 16), i.e., avoids widely oscillating profiles with negative 
values of the concentration, results which have no physical sense. 

The right-hand side of eqn. 19 represents the error made. This error is of first 
order with respect to h and r [i.e., O(h + T)]. It is the sum of two terms, the first being 
a dispersion term, proportional to the space increment, h, and the second, proportional 
to the time increment, r, being non-linear. It vanishes when r + 0 or when d2flX2 + 
0. In the case of a Langmuir isotherm, d2f/X2 = - 2Gb/(l + K)3, and is never zero. 
a2f/X2 can be zero only for a linear isotherm. The sign of this second term is 
determined by the curvature of the isotherm. 

In the case of a Langmuir isotherm, or of an isotherm convex towards the axis of 
stationary phase concentrations, the profile predicted by the ideal model exhibits 
a front shock2,3*8. The second differential of the isotherm is negative and the two terms 
add to each other. The effect of the error is in the appearance of a dispersion term, the 
replacement of the concentration discontinuity by a shock layer, with a finite thickness 
and a decrease in the shock amplitude. If the isotherm is concave, in contrast, the shock 
appears on the rear of the profile, but the qualitative influence of the numerical errors 
remains the same. 

Second difference type 
An alternative form of the general equation of the ideal (equilibrium) model of 

chromatography, equivalent to eqn. 1, is the following: 

ac aq r+F.dt+u+=O (20) 
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In this case, the equivalent finite difference equation is written as 

q+l- q 
z 

+F.~+l-~+U.q+lhC;‘:=O 
z 

W) 

In eqn. 20, n is the time index andj is the space index. For this type of finite difference 
equation, the Courant condition (see above), in the ideal approximation, is U,Z//Z > 0. 
It is, of course, always satisfied. Expansion of the different terms gives 

The equilibrium isotherm is again given by eqn. 12 (Langmuir isotherm). In a practical 
calculation, we could use the following approximation: 

Combining eqns. 22-24 gives the second term of eqn. 21: 

d+l - 4; _ 1 G(CY +1 

- -. - q) A. G(q+' - q) 
T z l+bq =z (1 + bq)’ (* + bq) 

= 
K )( 

g g+;.$)(1 +bC)]; 

By combining eqns. 21 with eqns. 22-25, we obtain 

(1 +F.g)g++ 

From eqn. 17, we can derive that 

a2c uz a2c -= 2 
azat 

l+& 

.p2f ac 0 ac2 aZ - uz. s 

ac 

(24) 

(25) 

(26) 

(27) 
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Combination of eqns. 18, 26 and 27 gives 

The essential difference between the equation derived in the case of a linear isotherm 
and eqn. 28 is in the first term of the right-hand side, equal to - FbCaf/laC . X/at, i.e., 
to k’bCiX/at. This term is independent of the value of the integration increments. The 
error cannot be made infinitely small by increasing the computer time: the solution 
converges towards a solution of the top part of eqn. 28, i.e., without the lower term, 
proportional to t, which is not eqn. 20. Actually, the term which contains FbC comes 
from the approximation made above (see eqn. 24). The error is complex and the 
numerical solution obtained by this method cannot be trusted entirely. Of course, in 
the linear case the coefficient b is zero. 

If an approximation other than eqn. 24 is taken for q’j+‘, e.g., q?+l x 
GCj’? i/(1 + bq?:), the term which contains FbC can also be eliminated, and the 
results may be better. 

This analysis illustrates the difftculties and pitfalls which may be encountered in 
non-linear chromatography when a numerical algorithm is not very carefully studied 
before it is implemented. 

Comparison between the two dlyference types 
If the non-linear contribution can be ignored (small deviation from the linear 

isotherm), the apparent dispersion coefficient in the case of the first difference type 
studied becomes 

D,hu 
* 2 

z” +1 

(1 + k’)h 1 
and in the case of the second difference type 

hu 
D, = - 

2 

zu _ 1 

(1 + k’)h 1 

(29) 

(30) 

In practice, we want to use the apparent diffusion coefficient, D,, to account for the 
diffusion term, D, which we neglected when we replaced the exact mass balance 
equation by the equation of the ideal model (eqns. 1 and 20). In fact, D, could be used 
to simulate the finite column efficiency. Then it is necessary to keep the apparent 
dispersion coefficient constant during the entire calculation. The Courant number will 
be kept constant, hence we must have 

(,.:” ) .af, = constant 

ac 

(31) 
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If one takes, for the sake of simplicity and clarity, the space increment to be equal to the 
column height equivalent to a theoretical plate (h = H), the time increment is given by 

z = constant . (1 + K)$ (32) 

In all our calculations3*7-‘0, we have taken the Courant number as equal to 2, hence 

(33) 

Our first requirement is the numerical stability of the solution. This does not require 
that we keep the Courant number constant, but merely that we make sure that it 
exceeds unity’. One simple way to satisfy this condition, in the case of a Langmuir-type 
isotherm, would be to take z equal to 2( 1 + Ko)h/u, where k. is the limit value of 6”/laC 
for an infinitely small sample. However, then the apparent diffusion coe&ient 
increases during the elution of the band (see eqn. 29). If we adopt a variable time 
increment, z = z(C), the error term introduced will have certain effects on the results 
of the simulation of the migration of the chromatographic band. Comparison between 
the exact analytical solution of eqn. 1 in the case of a Langmuir isotherm and the 
numerical solution obtained with the first difference type shows, however, that the 
difference between the two profiles, i.e., the error introduced by the numerical 
calculation and accounted for by eqn. 19, is small and cannot be very different from 
that predicted by eqn. 29 with a constant value of the Courant number”. 

In the case of the first difference type, the error contains two terms (eqn. 19). The 
first one is the artificial dispersion term just discussed. The second one is smaller,but, in 
the case of a Langmuir type isotherm, it tends to enhance the self-sharpening effect of 
the band due to the non-linear behavior of the equilibrium isotherm and to the strong 
concentration dependence of the velocity associated with a concentration u,. 

The second difference method should be avoided because of the presence of 
a constant term in its error function, a term which is independent of the integration 
increments. 

ERROR ANALYSIS IN THE CASE OF THE LAX-WENDROFF TYPE DIFFERENCE METHOD 

The kinetic model for non-linear chromatography is more general than either the 
ideal or the semi-ideal models, which postulate tiear equilibrium between the two 
phases at any time and any location in the column. The only assumption made in this 
model is in the choice of the kinetic equation which relates the rate of change of the 
concentration in the stationary phase, to the concentrations of the compound under 
study in both phases. In one of its simplest forms, the kinetic model can be written as 

(34) 
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Eqn. 34 is the general mass balance of chromatography. Eqn. 35 is the kinetic model. In 
this equation, K is the rate constant or mass transfer coefficient and q is the 
concentration of the compound of interest in the stationary phase. First-order kinetics 
have been selected here. The classical initial and boundary conditions are written as 

C(z = 0, t) = co, O,<t<z 

C(z = 0, t) = 0, I>Z (36) 

C(z, I = 0) = 0 q(z, t = 0) = 0 

There is no analytical solution for this system of equations, although Goldstein’ 3 and 
Wade et al. l4 derived an analytical solution in the closely related case when the kinetic 
equation is that of the classical Langmuir adsorptiondesorption kinetics. Numerical 
solutions must be calculated, and the best approach seems to be the Lax-Wendroff 
method’5S’6. Two cases can be distinguished, depending whether the problem 
discussed involves a near-equilibrium model (i.e., fast kinetics of mass transfer between 
phases, so the number of transfer stages in the column is large6) or a true kinetic 
problem, in which case the mass transfers between phases are slow. 

NEAR EQUILIBRIUM PROBLEM 

Under the equilibrium approximation, the system of eqns. 33 and 34 can be 
replaced by a single partial differential equation”, which is written as 

ac ac 2 

at + u, . az = D, . $ (37) 

where D, stands for D/( 1 + F . af//ac). The corresponding finite difference equation is 

q+l - q 
+ u, . 

q+1 - q-1 
z 

2h -($+$)(q+1-2c:+q-l)=0 (38) 

where n is the time index and j the space index. For this method, the stability condition 
is (uJ/~)~ + 2D,z/h2 < 1 (ref. 16). 

In order to calculate the truncation error introduced by the Lax-Wendroff 
procedure in the near equilibrium case, we write as follows the four-term expansion of 
the higher order terms in eqns. 34 and 35, at the index values n andi: 

(39) 
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In the ideal approximation, we have (see above) 

a a 
at’ -“‘-dz 

and 

a2 a2 -= 
at2 uz . s 

Combining eqns. 38-43 gives 

93 

(41) 

(42) 

(43) 

an equation which is equivalent to 

This relationship shows that the truncation error caused by the use of the 
Lax-Wendroff calculation procedure under equilibrium conditions, in the linear 
approximation, and by the replacement of eqn. 34 by eqn. 36 for the numerical 
calculation is equal to 

@.r)” - h’]!$ (45) 

The truncation error introduced by the Lax-Wendroff method is of second order, i.e., 
0(h2 + r’). Furthermore, no artificial dispersion term is introduced in thecalculation. 

If we assume the elution band to be a near Gaussian profile, we can fit the upper 
part of the peak (most of the portion above the inflection points) on a polynomial, i.e., 

C(z, t) = Iaid. If the profile is Gaussian, a parabola would suffice’* and the term in 

eqn. 44 is zero. If the profile is unsymmetrical, a third-degree polynomial, or 
a polynomial with a very small fourth-degree term, gives satisfactory results, hence, 
aJclaz3 x a3 + a4z x u3. The last term in eqn. 44 contains a constant, whose effect is 
to change the position of the solution, that is, to change the solution from C(z, t) to C(z, 
z - at), where o! is the product of the coefficient of eqn. 44 and u3. 

If we compare eqns. 28 and 44, we see that, whereas the truncation error 
introduced by the characteristic scheme is of second order with respect to h and r, with 
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the Lax-Wendroff scheme the truncation error is only of the third order. The main 
effect of the former is to disperse the band, and in most instances to act mainly as an 
apparent diffusion term. In the latter instance, the effect is essentially a shift in the peak 
position. 

Non-equilibrium problem 
In this instance, the system of partial differential eqns. 34 and 35 is replaced by 

the following system of algebraic, finite difference equations: 

(46) 

(47) 

We combine now these equations with eqns. 39-41 and the equation similar to eqn. 39 
which can be written for G+‘: 

The numerical error contains two parts. The first part contains the first two terms of 
the right-hand side of eqn. 48 and is of second order [O(h2 + T”)]. The last term of eqn. 
48 is of first order in z. Hence, in the non-equilibrium case, the Lax-Wendroff 
procedure introduces a first-order error. The third term of eqn. 48 is equal to 

It is obvious that when the system approaches equilibrium, this last term becomes zero. 
An apparent diffusion term appears, much as with the characteristic procedure. ,There 
is an important difference, however. With the characteristic procedure, the apparent 
diffusion coefficient depends only on the integration increments and on the differential 
of the isotherm (eqn. 29). If a proper set of values is chosen for these increments, in 
order to simulate the elution profile of a band with a column having a certain finite 
efficiency, the apparent column efficiency for other compounds having a different 
retention will be fixed. This efficiency varies rapidly with the retention (i.e., with KC,). 
Thus;although it is possible to simulate properly the elution of a binary mixture with 
a relative retention close to unity, the procedure cannot be applied to multicomponent 



SIMULATION OF CHROMATOGRAPHIC ELUTION BAND PROFILES 95 

mixtures or to gradient elution. In contrast, the use of a kinetic model and of the 
Lax-Wendroff calculation procedure permits the simulation of the migration of 
a multicomponent band in gradient elution, while keeping the column efficiency of 
each component constant and equal to the required value, or varying it as needed, 
during an experiment. 

RESULTS AND DISCUSSION 

Numerical simulations were performed for the different cases discussed above, 
varying the values of the space and time increments of the integration, in order to test 
the validity of our theoretical analysis of the error problem. The results of these 
calculations are reported in Figs. 1-12. In Fig. 1, two chromatograms are shown, 
calculated by integration of eqn. 1, performed using the characteristic method and two 
different values of the space increment, for the same value of the time increment. 
A linear isotherm was used. A Gaussian band profile should be obtained. This is the 
result given by the calculation. The effect of doubling the space increment is important 
and corresponds to a two-fold reduction of the apparent column efficiency. This 
phenomenon has been used to advantage in our recent work3,g-‘2. Fig. 2 shows the 
effect of the same change in the space increment when a non-linear isotherm is used. 

Fig. 1. Profiles obtained as solution of eqn. 1 using the characteristic method and the first type differencx 
equation. Linear isotherm; column length, 5 cm; linear flow velocity, 0.25 cm/s; constant time increment, 
r = 0.05 s. Profile 1, /I = 0.0005 cm; profile 2, II = 0.001 cm. 
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25 3Q 3s 40 l-G 5.5 60 

Fig. 2. Same as Fig. 1, except non-linear isotherm and sample size 100 times larger. 

$ 

45 47 4a 51 53 57 59 (11 

Fig. 3. Same as Fig. 1, except constant space increment, h = 0.001 cm. Profile 1, T = 0.025 s; profile 2, T = 
0.05 s. 
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Fig. 4. Same as Fig. 3, except non-linear isotherm and sample size 100 times larger. 

45 47 48 51 53 35 5-I 81 63 

TIME 

Fig. 5. Same as Fig. 1, except second difference type.. Constant time increment, 7 = 0.01 s. Profile 1, h = 
0.0025 cm; profile 2, h = 0.005 cm. 
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30 

Same as 

35 40 50 55 60 65 

5, except non-linear isotherm and sample size 100 times larger. 

Fig. 7. Same as Fig. 5, except constant space increment, h = 0.005 cm. Profile 1, t = 0.005 s; profile 2, T = 
0.01 s. 
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23 30 36 40 46 60 5s 60 

TIME 
Fig. 8. Same as Fig. 7, except non-linear isotherm and sample size 100 times larger. 

46 47 46 51 53 59 6l 63 

Fig. 9. Profiles obtained as solutions of eqn. 33, using the Lax-Wendroff procedure. Linear isotherm. 
Column length, 5 cm; linear flow velocity, 0.25 cm/s; mass transfer coeffkient, K = 60 s- ‘; axial dispersion 
coeffkient, D = 0.00011 cm’ s-l; constant time increment, T = 0.005 s. Space increment: profile 1, h = 
0.0025 cm; profile 2, h = 0.005 cm. 
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25 30 3s & So 56 so 

Fig. 10. Same as Fig. 9, except non-linear isotherm and sample size 100 times larger. 

43 47 4s 51 53 s7 s4 63 I 

TIME 

Fig. 11. Same as Fig. 9, except constant space increment, h = 0.005. Time increment: profile 1, T = 0.0025 
s; profile 2, 7 = 0.005 s. 
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9 d' 

Fig. 12. Same as Fig. 11, except non-linear isotherm and sample size 100 times larger. 

with a large sample size. Then the effect is small, which is in agreement with the fact 
that the influence of the column efficiency on the band profile is small at high loading 
factors”. 

Figs. 3 and 4 show similar chromatograms, obtained by changing the time 
increment, while keeping the space increment constant, which is the reverse of what 
was done in Figs. 1 and 2. The results obtained are very similar to those obtained in the 
previous case, as predicted by our discussion of eqn. 19. 

Figs. 5-8 show chromatograms obtained under nearly the same conditions as 
those in Figs. 14, but with the second difference method described here. The results 
obtained under linear conditions are satisfactory, and are as predicted by eqn. 27. The 
effect of the choice of the space increment on the efficiency of the peak obtained is 
important (Fig. 5), while the effect of the choice of the time increment is nearly 
negligible (Fig. 7). In contrast, the results obtained under non-linear conditions are 
poor: it is seen in Figs. 6 and 8 that the mass is not even conserved! This method should 
certainly be avoided, although it gives profiles that look realistic. 

Figs. 9-12 show chromatograms obtained by solving eqn. 34 using the 
Lax-Wendroff method. The equilibrium isotherm is again linear in Figs. 9 and 11, and 
two different values of the space increment were used with the same value of the time 
increment for Fig. 9, the opposite, two different values of the time increment with the 
same space increment for Fig. 11. In both instances the two profiles are extremely 
close, almost impossible to differentiate in most of the concentration range. Finally, 



102 B. LIN, 2. MA, G. GUIOCHON 

Figs. 10 and 12 show the solutions obtained under non-linear conditions, with two 
different values of the space increment (Fig. 10) for the same time increment, or two 
different values of the time increment for the same space increment. The differences 
between the two profiles on either Fig. 10 or Fig. 12 are very small, comparable to the 
differences between the two profiles shown in Figs. 2 and 4. 

There are differences between the two basic approaches studied here, the 
characteristic and the Lax-Wendroff methods, regarding the stability of the numerical 
solutions. Oscillations easily take place, especially with the Lax-Wendroff scheme, if 
the integration increments are not properly chosen. Hence a direct comparison 
between the results obtained by the two methods is difficult and must be limited to 
a narrow range of values of z and h. Depending on the nature of the problem studied, 
the first type difference method2*3~7,g-12 or the Lax-Wendroff method6y15 will be 
chosen. 
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